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Partial Slip Effect on Heat and Mass Transfer of MHD 
Peristaltic Transport in a Porous Medium

(Kesan Gelincir Separa ke atas Pemindahan Haba dan Jisim bagi 
Aliran Peristalsis MHD di dalam Medium Berliang)

OBAID ULLAH MEHMOOD, NORZIEHA MUSTAPHA*, SHARIDAN SHAFIE & T. HAYAT

ABSTRACT

This research looks at the effects of partial slip on heat and mass transfer of peristaltic transport. The magnetohydrodynamic 
(MHD) flow of viscous fluid in a porous asymmetric channel has been considered. The exact solutions for the stream 
function, longitudinal pressure gradient, longitudinal velocity, shear stress, temperature and concentration fields are 
derived by adopting long wavelength and small Reynolds number approximations. The results showed that peristaltic 
pumping and trapping are reduced with increasing velocity slip parameter. Furthermore, temperature increases with 
increasing thermal slip parameter. Moreover, the concentration profile decreases with increasing porosity parameter, 
Schmidt number and concentration slip parameter. Comparisons with published results are found to be in good agreement.
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ABSTRAK

Kajian ini membincangkan kesan gelincir separa ke atas pemindahan haba dan jisim bagi aliran peristalsis. Aliran 
yang mempunyai hidrodinamik magnet (MHD) di dalam saluran tak simetri berliang dipertimbangkan. Penyelesian tepat 
untuk rangkap arus, kecerunan tekanan membujur, halaju membujur, tegasan ricih, medan suhu dan medan kepekatan 
diperoleh dengan menggunakan penghampiran panjang gelombang yang panjang dan nombor Reynold yang kecil. 
Keputusan menunjukkan peristalsis mengepam dan memerangkap bendalir berkurangan apabila meningkatnya parameter 
halaju gelinciran. Seterusnya, suhu meningkat dengan peningkatan parameter haba gelinciran. Tambahan pula, profil 
kepekatan menurun dengan meningkatnya parameter keliangan, nombor Schmidt dan parameter kepekatan gelinciran. 
Perbandingan dengan keputusan yang telah diterbitkan menunjukkan persetujuan yang baik.

Kata kunci: Aliran peristalsis MHD; gelincir separa; medium berliang; memerangkap; mengepam; pemindahan haba 
dan jisim

INTRODUCTION

It is a fact that the peristaltic waves induced by the 
boundaries of channel or tube have a key role for fluid 
transport in the living organisms and in industrial 
pumping. The peristaltic activity is quite familiar in the 
gastrointestinal tract, bile ducts, the ureter, the esophagus 
and other glandular ducts. Roller and finger pumps also 
function under this mechanism. The peristalsis in the 
presence of heat transfer is imperative in many processes 
as oxygenation and hemodialysis. Heat transfer is also 
significant in the treatment of diseased tissues in cancer. 
Furthermore, the human lungs, bile duct and gall bladder 
have stones that behave like natural porous media. Also, 
keeping in mind the pathological situations, the distribution 
of fatty cholesterol and artery clogging blood clots in the 
coronary artery may be considered as the domains of porous 
medium. The magnetohydrodynamic peristaltic flow in a 
channel has a pivotal role in the motion of physiological 
fluids including blood and blood pump machines. Mass 
transfer in peristaltic flow occurs during the chemical 
breakdown of food, amalgamation of gastric juices with 

food and in other digestion processes. Motivated by 
these facts, several theoretical and experimental attempts 
have been made in view of the practical applications of 
peristalsis since the first investigation of Latham (1966). 
Few representative investigations on the topic may 
include the recent works through the studies (Akbar & 
Nadeem 2011; Elmaboud & Mekheimer 2011; Hayat & 
Mehmood 2011; Hayat & Noreen 2010; Hayat et al. 2010a; 
Mahmoud 2011; Mahmoud et al. 2011; Mehmood et al. 
2013; Mekheimer & Elmaboud 2008; Muthuraj & Srinivas 
2010a; Sezer & Yildirim 2010; Shafie et al. 2013; Srinivas 
& Muthuraj 2010). 
	 Yildirim and Sezer (2010) considered the effects 
of partial slip on peristaltic flow of MHD viscous fluid 
in an asymmetric channel. They found that for positive 
flow rate the pressure rise decreases with increasing 
velocity slip parameter. Furthermore, slip effects on the 
MHD peristaltic flow in an asymmetric channel with heat 
transfer were examined by Nadeem and Akram (2010). 
They obtained the solutions by Adomian decomposition 
method and noted that the trapping reduces with the 
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increasing velocity slip parameter. Hayat et al. (2010b) 
investigated the simultaneous effects of slip and heat 
transfer on peristaltic flow in an asymmetric channel. They 
observed that the temperature is an increasing function 
of thermal slip parameter and decreasing function of 
phase difference. Muthuraj and Srinivas (2010b) studied 
the mixed convective heat and mass transfer in a porous 
vertical wavy channel by taking into account the no-slip 
conditions. Moreover, Srinivas et al. (2011) studied the 
mixed convective heat and mass transfer on peristaltic flow 
in an asymmetric channel subject to no-slip conditions. 
They concluded that the concentration decreases with 
an increase in flow rate and channel width ratio while 
concentration increases with increasing Soret number and 
phase difference.
	 To the best of our knowledge, no existing attempt 
highlights the slip effects on the MHD peristaltic flow in 
an asymmetric channel with porous medium and heat and 
mass transfer. No doubt, the fluid exhibits slip effects 
when mean free path length of the fluid is comparable 
to the distance between the plates as in nanochannels or 
microchannels. The main objective here was to study the 
slip and mass transfer effects on peristaltic flow in an 
asymmetric channel. Hence the solution expressions are 
first derived for long wavelength and low Reynolds number 
and then analyzed in details. The phenomenan of pumping 
and trapping have been accorded enough attention.

MATHEMATICAL ANALYSIS

	    at upper wall,	 (1)

	  at lower wall,
	 (2)

where ai(i = 1,2) are the amplitudes of waves at upper and 
lower walls, respectively, λ is the wave length,  is the 
time, φ is the phase difference varying in the range 0 ≤ φ ≤ 
π where φ = 0 corresponds to the channel with waves out of 
phase and for φ = π, the waves are in phase. Furthermore, 
the geometry parameters satisfy the relation,
								      
	 	 (3)

	 The upper wall is maintained at the temperature T0 
and concentration C0 while the lower wall is maintained 
at temperature T1 and concentration C0. The fluid is 
electrically conducting in the presence of constant 
magnetic field B0 applied in the transverse direction. 
The equations describing the two-dimensional flow are 
(Srinivas et al. 2011)	
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where ρ is the fluid density,  and  are the velocity 
components along  and  directions, respectively, 

 is the pressure, m is the dynamic viscosity of the 
fluid, c is the electrical conductivity of fluid, k is the 
thermal conductivity,  is the permeability parameter,  
x is the specific heat at constant volume, T and C are the 
temperature and concentration of fluid, D  is the coefficient 
of mass diffusivity, Tm is the mean temperature and KT is 
the thermal-diffusion ratio.

FIGURE 1. Sketch of the physical model

Consider the two-dimensional flow of a viscous fluid 
in an asymmetric channel having width d1 + d2. An 
incompressible fluid fills the porous space. We choose 
the Cartesian coordinate system with -axis along the 
centerline in the direction of wave propagation and -axis 
transverse to it. We assume sinusoidal wave propagating 
with constant velocity c along the walls of the channel. 
The sketch of the physical model is given in Figure 1. 
Since the peristaltic motion is sinusoidal in nature (Latham 
1966), the channel walls have been represented through 
the following shapes:
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	 We choose a wave frame  moving with the 
velocity c away from the laboratory frame  The 
transformations in the two frames are taken as

	
	

	 (9)

where  are the longitudinal and transverse components 
of velocity in the wave frame  and  is the pressure. 
Using transformations (9) along with the variables

			 

	 	
	

(10)
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we have after utilizing the long wavelength approximation 
and low Reynolds number the following expressions,

								      
	 	 (12)
							     
	
	 	 (13)
							     
	
	 	 (14)
								      
	
	 	 (15)

and p ≠ p (y). In above expressions, M is the Hartman 
number, Br is the Brinkman number, Sc is the Schmidt 
number and Sr is the Soret number.
	 The boundary conditions are taken (Hayat et al. 2010b) 
in the forms as,

	 	 (16)

		

	 	 (17)
	

	 h1(x) = 1 + a sin(2πx),     h2(x) = –d–b sin(2πx +φ),
	 (18)

with a = a1/d1, b = a2/d1, d = d2/d1 and a2 + b2 + 2ab cos φ ≤ 
(1 + d)2  and β  is the dimensionless velocity slip parameter, 
γ is the dimensionless thermal slip parameter, σ is the 
dimensionless concentration slip parameter and F is the 
dimensionless average flux in the wave frame defined by,

	 	 (19)

	 The exact solutions of (12) to (15) along with the 
boundary conditions (16) and (17) were obtained by 
direct integration and the results are generated using the 
software MATHEMATICA. The solutions of stream function 
Ψ, longitudinal velocity u, longitudinal pressure gradient  
dp/dx, shear stress at the upper wall (y = h1) Sxy, temperature 
η and concentration field ϕ are

	 Ψ = S1 + S2y + S3 cosh y + S4 sinh y,	 (20)
			 
			 
	 u = S2 + S3  sinh y + S4  cosh y,	 (21)
			 
	  = –(1 + A4) J,	 (22)
			 
			 
	 Sxy = S3J cosh h1+ S4 J sinh h1,	 (23)
			 
	 	
	 η =	 B1 +B2y – L17y

2 – L18 cosh 2 y 
		  – L19 sinh 2 y,	 (24)

		  		
	 ϕ =	 C1 + C2y + Sc Sr{L17y

2 + L18 cosh 2 y 
		  + L19 sinh 2 y},	 (25)

where

	 S1 = A3,   S2 = A4,   S3 = (A1 + A2)/J, 
	 S4 = (A1 – A2)/J,    J = M2 + (1/K),

	 B1 = {L1 A1
2 + L2A1A2 + L3A2

2 + L4}/4J(h1 – h2 + 2γ)},

	 B2 = {L5 A1
2 + L6A1A2 + L7A2

2 + L8}/4J(h1 – h2 + 2γ)},

	 C1 = {L9 A1
2 + L10A1A2 + L11A2

2 + L12}/4J(h1 – h2 + 2σ)},

	 C2 = {L13 A1
2 + L14A1A2 + L15A2

2 + L16}/4J(h1 – h2 + 2σ)},

and all the quantities involved in the above computations 
are presented in Appendix.
	 The non-dimensional pressure rise per wavelength 
(Δpλ) and frictional forces (Fλ1) and (Fλ2) at the upper and 
lower walls are (Hayat & Mehmood 2011),
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	 (26)

DIFFERENT WAVE FORMS

The non-dimensional expressions for different wave forms 
are represented by

Sinusoidal Wave:

	 h(x) = 1 + a sin (2πx).	 (27)

Triangular Wave:

	 h(x) = 1 +a{ sin(2(2m – 1)πx)}.	 (28)

Square Wave:
			 
			 
	 h(x) = 1+a{ cos(2(2m – 1)πx)}.	 (29)

Trapezoidal Wave:

	 h(x) = 1+a{ sin(2(2m – 1)πx)}.

		  (30)

In the present study, the analysis was done by taking the 
first fifty terms of the above series.

DISCUSSION

PUMPING

The pumping characteristics for different values of slip 
parameter β were analyzed. The pressure rise has been 
computed first by numerical integration and then plots were 
presented. The regions of interest are peristaltic pumping 
region (Δpλ  > 0, θ > 0), free pumping region (Δpλ  = 0, θ 

> 0) and augmented pumping region (Δpλ  < 0, θ > 0) . The 
comparison of the present series solution for pressure rise 
per wave length Δpλ for different flow rate θ is presented in 
Figure 2. These results are found in good agreement with 
those reported by Mishra and Rao (2003).

FIGURE 2. Comparison of pressure rise per wavelength Δpλ for 
different flow rate θ when d = 2, a = 0.7, b = 1.2, 

K →∞, M = 0, β = 0

FIGURE 3. Pressure rise Δpλ for (a)  β with d = 2, a = 0.7, b = 1.2,  K = 1, M = 1,(b) different wave forms 
versus θ when d = 1, a = 0.5, b = 0.5, φ = 0, K = 1, M = 1, β = 0

	 The slip effects on dimensionless pressure rise per wave 
length Δpλ  against the dimensionless average flux θ is shown 
in Figure 3(a). Both peristaltic and free pumping decreases 
when β  increases which shows that the velocity slip reduces 
the efficiency of the peristaltic and free pumping. However, 
the augmented pumping decreases for θ < 1.4 and increases 
when θ > 1.4. Physically, velocity slip lessens the strength 
of augmented pumping below a critical value of θ = 1.4, 
after this critical value the augmented pumping is enhanced 
with an increase in velocity slip parameter.
	 In Figure 3(b) Δpλ against θ for different wave 
forms (triangular, sinusoidal, trapezoidal and square) 
is sketched. It was found that in peristaltic pumping 
and free pumping, the square wave gives best pumping 
characteristics and triangular wave gives worst pumping 
characteristics. In augmented pumping such behaviour is 
inverted after  θ = 1.3. The longitudinal pressure gradient 
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dp/dx for different values of slip parameter β is shown 
in Figure 4. It was noticed that dp/dx decreases with an 
increase in β and meets its maxima in the interval x ∈ 
[0.4,1] where it resists the flow.

VELOCITY PROFILE

The behaviour of β on longitudinal velocity component 
u in symmetric and asymmetric channels at cross 
section  x = 0.5 is sketched in Figure 7. Figure 7(a) 
depicts the variation of u versus transverse coordinate 
y for symmetric channel (f = 0). Here, u increases near 
the walls when β increases but near the centerline u 
decreases. Figure 7(b) is plotted for asymmetric channel 

 and the qualitative behaviour is found the same 
but quantitatively, the magnitude of u increases in case 
of asymmetric channel.

TEMPERATURE PROFILE

Figure 8 highlights the variations of β and γ on the 
temperature distribution η plotted against y. Here η  
decreases when β increases. Further η increases with an 
increase in γ. The temperature profile is almost parabolic 
and the temperature is greater in magnitude in lower 
portion of the channel.

CONCENTRATION PROFILE

Concentration distribution ϕ is observed at the cross 
section x = 0.2 of the channel. The solution ϕ is plotted 
for different values of Br, K, Sc, σ, M and β in Figure 9. 
We note that ϕ decreases with an increase in Br, K, Sc and 

FIGURE 4. Pressure gradient  dp/dx against x for β with d = 2, 
a = 0,7, b = 0.8,  K = 1, M = 1, F = –4

SHEAR STRESS

The shear stress distribution Sxy (via x) on the upper wall  
(y = h1) is shown in Figure 5 for various values of β. 
Oscillatory behaviour in view of the peristaltic waves along 
the walls is noticed. The absolute value of shear stress Sxy is 
a decreasing function of β which depicts that as the velocity 
slip parameter become greater in magnitude, the shear 
stress becomes weaken along the walls of the channel.

FRICTIONAL FORCES

The variation of slip parameter on the frictional forces at 
lower and upper walls is seen by numerical integration 
over the domain [0,1]. In Figure 6(a) frictional force Fλ1 is 
plotted against θ for different values of β at the upper wall  
(y = h1). Through an increase in β there exists a critical 
value of θ below which Fλ1 increases and resists the flow, 
above this critical value the behaviour is opposite and Fλ1  
decreases and assists the flow. Similar qualitative behaviour 
is found for Fλ2 at lower wall (y = h2) in Figure 6(b).

FIGURE 5. Shear Stress Sxy against x for β with d = 1, a = 0.5,
 b = 0.5,  K = 1, F = –1.5

FIGURE 6. Frictional forces Fλ1 (i) and Fλ2 (ii)  for β with fixed d = 2, a = 0.7, b = 1.2,  K = 1, M = 1
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σ. Moreover, ϕ is an increasing function of M and β. The 
concentration distribution is found almost parabolic and is 
greater in magnitude below the centerline of the channel. 
The variations are less near the walls in comparison to the 
centerline of channel.

TRAPPING

Here for symmetric channel (f = 0) the stream lines are 
plotted for sinusoidal, triangular, square and trapezoidal 
waveforms in Figures 10 to 13. Panel (a) was plotted for 
no-slip case β = 0 and panels (b) and (c) were made when 
β ≠ 0. For no-slip case two equal circulating trapped 
bolus exists near both upper and lower walls and with an 
increase in β, this circulation of fluid decreases equally 
and symmetrically while the trapping vanishes for large 
β. The stream lines for sinusoidal waveform were plotted 
for the asymmetric channel  in Figure 14. These 
figures exhibit that the trapping exist for both lower and 
upper walls but not symmetric along the centerline and 
the trapping reduces sharply below the centerline of the 
channel when β increases.

CONCLUSION

This study waas devoted to the slip effects and mass 
transfer on peristaltic flow in an asymmetric channel. 

Analysis has been carried out for different wave forms. 
It was observed that the peristaltic and free pumping 
decrease by increasing velocity slip parameter. The square 
wave gave the highest pumping rate in peristaltic and free 
pumping cases. Longitudinal velocity subject to the slip 
effects has opposite behaviour at the centerline and near the 
channel walls. The circulation of trapped bolus vanishes 
for large velocity slip parameter. An increase in thermal 
slip parameter results in the increase of temperature. 
Concentration profile is a decreasing function of Brinkman 
number, porosity parameter and Schmidt number. The 
velocity and concentration slip parameters have opposite 
effects on concentration profile.

APPENDIX

Here we present the values involved in the solution 
expressions. These are 

L1 =	–Br((h2 – 2γ + 2 h2γ + h1(-1 + 2 γ)) cosh 
(h1 – h2) + (h1 + h2 – 2 h1γ + 2 h2γ – 4 γ2) sinh 

(h1 – h2)(cosh (h1 + h2) + sinh (h1 + h2), 
L2 = –4 Br(h1 – h2 + 2γ)h1)h2 – γ) + h2γ),
L3 =	Br((h1 + γ)(1 + 2 γ)(cosh 2 h1 + sinh 2 h1) 

+ (h2 – γ)(-1 + 2 γ)(cosh 2 h2 + sinh 2 h2))
(cosh 2 (h1 + h2)–sinh 2 (h1 + h2)),

FIGURE 7. Velocity profile u with y for β when d = 1, a = 0.5, b = 0.5, F = 2.5, K =1, x 0.5, M = 1, (i)φ = 0(ii) 

FIGURE 8. Temperature profile η with y when d = 2, b = 1.2, x = 0.5, M = 1, F = –1, Br = 4  
(i) a = 0.7, K = 2, γ = 0.03,(ii) a = 0.9, β = 0.01, K = 1
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FIGURE 9. Concentration profile ϕ with y for d = 2, a = 0.7, b= 1.2, F = –1, x = 0.2, φ = π/4, Sr = 1, (i) β = 0.03, γ = 0.03, 
K = 1, s = 0.03, Sc = 1, M = 1, (ii) β = 0.03, γ = 0.03, Br = 2, s = 0.03, Sc = 1, M = 1, (iii) β = 0.03, γ = 0.03, Br = 1, 

s = 0.03, K = 1, M = 1, (iv) β = 0.03, γ = 0.03, Br = 1, K = 1, Sc = 1, M = 1, (v) β = 0.03, γ = 0.03, Br = 1, s = 0.03, 
K = 1, Sc = 1, (vi) Br = 1, γ = 0.03,  M = 1, s = 0.03, K = 1, Sc = 1  

FIGURE 10. Stream lines with fixed a = 0.5, b = 0.5, d = 1, φ = -0.35, M = 1, K = 1 and sinusoidal wave 
form (symmetric channel) for β (a) 0.00, (b) 0.05, (c) 0.09
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L4	 =	 4 (h1 + γ), 
L5	 =	 2Br(2 γ cosh (h1 – h2) + sinh (h1 – h2))(cosh

(h1 + h2 + sinh (h1 + h2)),
L6	 =	 4 Br(h1 + h2)(h1 –h2 + 2γ),
L7	 =	 –2Br(2 γ cosh (h1 – h2) + sinh (h1 – h2))

(cosh (h1 + h2) – sinh (h1 + h2)),

L8 = –4 ,  L9 =	BrScSr(cosh 2 (h1 + h2) – sinh 2
(h1 + h2))((h2 – σ)(1 + 2 σ) cosh 2 (2h1 + h2) + 
(h1 + σ)(–1 + 2 σ)cosh 2 (h1 + 2h2) + h2 sinh 2

(2h1 + h2) –σ sinh 2 (2h1 + h2) + 2 h2σ sinh 
2 (2h1 + h2) –2 σ2 sinh 2 (2h1 + h2) –h1 sinh 
2 σ2 sinh 2 (h1 + 2h2)),

FIGURE 11. Stream lines with fixed a = 0.5, b = 0.5, d = 1, φ =  0, F = -0.35, M = 1, K = 1  and triangular 
wave form (symmetric channel) for β (a) 0.00, (b) 0.03, (c) 0.06

FIGURE 12. Stream lines with fixed  a = 0.5, b = 0.5, d = 1, φ = 0, F = -0.30 , M = 1, K = 1 and square 
wave form (symmetric channel) for β (a) 0.00, (b) 0.10, (c) 0.22

FIGURE 13. Stream lines with fixed  a = 0.5, b = 0.5, d = 1, φ = 0, F = -0.30, M = 1, K = 1 and trapezoidal 
wave form (symmetric channel) for β (a) 0.00, (b) 0.10, (c) 0.22
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L10	=	 4 BrScSr(h1
2(h2 – σ)–h2(h2 –2σ)σ – h1(h2

2 – 4h2σ 
+2σ2)),

L11	=	 –BrSrSr(h1 + σ)(1 + 2 σ)cosh 2 h1 + (h2 – σ)
(–1 + 2 σ)cosh 2 h2 + h1 sinh 2 h1 + σ 
sinh 2 h1 + 2 h1σ sinh 2 h1 + 2 σ2 sinh 
2 h1 – h2 sinh 2 h2 + σ sinh 2 h2 + h2 σ 
sinh 2 h2 – 2 σ2 sinh 2 h2)(cosh 2 (h1 + 
h2)–sinh 2 (h1 + h2)),

L12  =	4 (h1 + σ),
L13	=	 –2BrScSr(2 σ cosh (h1 – h2)+sinh (h1 – h2))

(cosh (h1 + h2)+sinh (h1 + h2)),
L14	=	 –4 Br(h1 + h2)ScSr(h1 – h2 + 2σ),
L15	 =	 2BrScSr(2 σ cosh (h1 – h2) + sinh (h1 – h2))

(cosh (h1 + h2) – sinh (h1 + h2)),
L16	=	 –4 ,
L17	=	 A1A2Br,
L18	 =	 Br{(A1

2 + A2
2)/(4 )},

L19	=	 Br {(A1
2 – A2

2)/(4 )},

A1	 =	 {–((F + h1 – h2)J)}/{(((–2 + (h1 – h2) + J(h1 – h2)
β)cosh h1 + sinh h1) +((2 + (h1 – h2) + J(–h1 
+ h2) β)(cosh h2 + sinh h2)},

A2	 =	 {–((F0 + h1 – h2)J(cosh (h1 + h2) + sinh (h1 + 
h2))}/{(((2 + (–h1 + h2) + J (–h1 + h2)β)(cosh
h1 + sinh h1) + ((–2+ (–h1 + h2)+J(h1 – h2)β)
(cosh h2+sinh h2)}

A3	 = {((h1 + h2)((2+F +FJβ)(cosh h1 + sinh
h1)+(–2+F – FJβ)(cosh h2 + sinh h2)))}/
{(2(( 2+ (–h1 + h2) +J(–h1 + h2)β)cosh h1 +sinh

Jh1) + ((–2+ (–h1 + h2) +J(h1 – h2)β(cosh
h2 + sinh h2)))}

A4	 =	 {((2 + F + FJβ)(cosh h1 + sinh h1) + (–2 
+ F –FJβ)(cosh h2 + sinh h2)}/{((–2 +
(h1 – h2) +J(h1 – h2)β)(cosh h1 + sinh h1) + 
(2 + (h1 – h2) + J(–h1 + h2)β)(cosh h2 + sinh

h2.	 					   
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